
Noninvasive Re-architecture of Legacy Systems 

Ryan Berkheimer 
GST, Inc. 

16 June 2017 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 2	

Introduction 
Organizations that deal in climatological data - particularly front line 

research organizations, such as NOAA’s National Centers for Environmental 

Information (NCEI) - necessarily deal with a plethora of computing systems which 

collect, ingest, process, publish, and archive data. These computing systems are 

diverse in character, author, language, and scope. They are often created and 

maintained in house over years and even decades, and it is not uncommon to 

use a system that has been in operation for 20 years or longer, authored or 

altered by multiple authors of different scientific disciplines and responsibilities, 

which contains literally hundreds of separate files, modules, scripts, and libraries, 

all written in a variety of languages.  

 

Domain Observations 
 

As an example, the Pairwise Homogeneity Algorithm (PHA) and its 

encompassing GHCNM software has now been in development, production, or 

operation since the early 1990’s - going on 30 years, over four major versions 

and many more minor revisions, and has had at least two primary authors and 

many more associated researchers and editors. Before PHA was refactored in 

2014-2016, it consisted of over a dozen nested makefiles or other build files, 

several author-specific approaches to version control, and four distinct 

programming languages, at least one of which was nearly 40 years old. 

 

As another example, the Automated Surface Observing System (ASOS) 

ingest system has been in development, production or operation status since the 

1980’s. ASOS itself is a polyglot system consisting of three tiers - a nationwide 

on-site meteorological sensor array network with over 900 distinct locations; 

many distributed regional oversight offices which collect and verify data from 

subsets of these stations; and a central systems oversight which collects, 

verifies, analyzes, and publishes all data. The ingest system operates within this 

third tier, collecting and processing data sent from five different ASOS related 



	 3	

data sources, either as input data or assistance data. It is currently under re-

architecture and is the first practical case study of this publication. This system 

has had an unknown number of contributing authors, no software version control, 

sparse code-level documentation, and contains at least two distinct shell 

languages, a modem protocol over 30 years old, a nested manual graphical user 

interface system, and has over two hundred thousand lines of code written in C, 

FORTRAN, shell, and Java. 

 

Domain Analysis 
 

We present these examples as illustrations of the situation of the domain 

as a whole - they are not unique outliers, but instead are rather typical of many of 

the legacy systems currently in operation. They are the product of a truism of 

traditionally patterned climate data software, which operates in a fast paced and 

relatively new field, bases itself on an enormous breadth and depth of 

observational physical measurements and novel research, and relies on an even 

faster paced and newer field (computer science) for its expression.  

 

 Any system, natural or derived, which is a function of many unstable 

variables, is itself already in an unstable equilibrium, and can eventually spin out 

of control. Our legacy systems are an excellent example of this concept - with so 

many variables, iterations, technologies, authors, etc. these systems are born 

from an unstable condition, and over time will be pushed out of equilibrium. In 

practical domain specific terms this means that these systems naturally evolve to 

be unwieldy, hard to maintain, obtuse, poorly documented, and expensive to 

develop or repair. 

 

When this non-equilibrium eventually manifests, the system owner 

generally has two options - repair or replacement. The option to repair has 

historically been preferred - not only because of the enormous resource 

commitments and risks of failure of developing a new system, but also because 



	 4	

of the qualities inherent to the climate data domain itself; it is not likely that the 

domain can or will stop relying on physical measurements, research efforts, 

collaborations, and the tools of computer science. Therefore, efforts to replace an 

existing system will rely on the same development conditions of the original, 

eventually returning to the same condition as the system it is intended to replace 

- a zero sum game. 

 

While not equivalent in scope to a complete replacement effort, repair 

efforts of mission-critical data processing systems are themselves not trivial. 

These efforts traditionally include large scale project refactoring of existing code 

to conform to present software languages and practices in an effort to return the 

system to an equilibrium or system-normal state. This usually requires careful 

collaboration and coordination between experts in the project intent, experts in 

the software languages and practices currently employed, and experts in current 

software practices. In the case of mission-critical software, which produces data 

products that others rely on, it also involves providing a drop in replacement that 

must exactly replicate the expected behaviors of the original system - a system 

that may also be changing as the repairs are being made. 

 

Problem Specification 
 

At a fundamental level the instabilities of a system are a product of the 

system’s heterogeneity. This is why the focus of repair efforts are essentially an 

attempt to reduce system heterogeneity in all project facets - this is accomplished 

with the introduction of version control, logging, and error handling systems, 

promotion of comprehensive documentation, simplification of deployment, and 

normalization of the codebase in both language and structure - the end goal 

being a revitalized, more easily managed and well behaved software system that 

can be maintained and built upon for an extended period of time, until the next 

repair.   

While the goal is sound, challenges and risks quickly arise partially as a 



	 5	

matter of unknowns - how one function depends on another, how one module or 

programming language manages error handling (either handled or unhandled), 

how system parts handle logging. These behaviors may all be tightly coupled, 

requiring the entire system to be unwound at once, like a single ball of yarn. 

Additionally, refactoring a system might force the system into design patterns 

which conflict with the actual intent of the original software - moving certain 

languages into another might make a system more stable, but at the expense of 

desired CPU speed, or the introduction of a language which is not suitable for 

continued ease of development by the researchers who will be further developing 

the software. 

 

 
 
 
Non-Invasive Re-Architecture 
 

Many of these same concerns were raised while our team began 

developing refactoring plans for the ASOS ingest system. Realizing their broad 

domain prevalence, we were motivated to create a solution that could be used for 

this project, other existing projects that currently face the same issues, and new 

projects which are predicted to face these issues in the future, designing a new, 

general method for system development. Focusing on an architecture-first 

approach, this method treats a target system as a conglomerate of discrete units 

that interact functionally and share state in an external framework, rather than as 

continuous singular entity that manages state internally. This approach allows 

individual components to retain their essential quality while simultaneously 

providing them with the easily accessible behaviors characteristic of well 

behaved systems - centralized logging, robust error handling and recovery, 

simple deployment, and automatic parallelization. While nothing comes ‘for free’, 

we believe this approach does provide extraordinary return on investment. 



	 6	

 

Our development approach is characterized by four tenets: 

• A functional-architecture framework 

• An external computational workflow engine 

• A specification driven, centralized control system 

• A language agnostic task API 

 

Functional Framework 
 

A popular way of thinking and designing climatological software is as a 

single logical instruction set, possibly containing branches, that is provided a set 

of runtime properties which it uses to execute a long series of instructions, 

eventually producing some final output. In this pattern the logic that happens in 

between endpoints is generally considered as a single black box. In practice, this 

manifests in many modules written in a variety of languages, which are 

connected loosely with systems languages (such as bash) with little thought to 

code structure. This pattern promotes an unstructured impulsive style of 

development that can easily become unclear how things are glued together, 

where something might be failing, or where an operation might be operating 

incorrectly.  

To correct this, our approach takes each module and defines it as a 

function - clearly defining inputs, outputs, where something comes from, and 

where it goes. We actually define three layers of functional behavior - a module 

level, which consists of a single module, its main function, and its inputs and 

outputs; a unit level, acting as a logical container of modules that consumes and 

produces meaningful data; and a job level, which acts as a top level container, 

treating units as part of a complete pipeline. This mental framework of project 

structure provides a clear path for mapping existing code, which may not be 

originally patterned uniformly, into one that is. 

 

 



	 7	

Workflow Engine 
 

Once the original system is arranged into a functional framework, that 

framework is formalized as a topology and then fit into a workflow engine. The 

workflow engine is designed as distributed computational engine that can run 

user code, scale horizontally and vertically, and automatically provide the 

features of parallelization, task branching, central logging, and error recovery 

uniformly across job components. 

In our system, the workflow engine runs job topologies, which as we 

described earlier, are collections of functional units arranged in a logical pipeline. 

To the workflow engine, each job unit is considered a single task, and tasks can 

be effortlessly branched in an acyclic digraph pattern within the job specification - 

I.e., job task 1 can provide output to both job task 2 and job task 3, which will 

each then progress on their own respective branch. This pattern of moving 

branching behavior from inside a code unit to the workflow engine automatically 

adds stability and error recovery to the system, while also providing a 

stereotyped way of handling flow behavior.   

As the workflow engine runs a job and a component task becomes ready 

for execution, it is provided to the workflow engine queue, along with a set of 

inputs. The inputs are automatically parallelized so that a task-input pair will be 

passed on to the next virtual peer available for a given peer. Workflow peers are 

based on physical servers, of which there may be an arbitrary number depending 

on the horizontal scale needs of a particular system, and virtual peers are based 

on the available CPU resources of a given peer. This method of central 

distribution ensures that only one virtual peer manages the state of a task 

running a specific input at a time.  

If a task fails, the exact state can be retraced, and error conditions in that 

case can be specified on a task, module, or job level. The workflow engine also 

provides output for all tasks, as well as metadata level information for the level 

specified (debug, info, error, etc.) to a single central log file. This provides a 

clear record of any issues and outputs for quality control. 



	 8	

Configurable Specification Control 
 

To allow for stereotyped control of workflow engine and job behaviors, our 

design provides a JSON specification for all system components – all system 

jobs and the workflow engine can be composed without code using a simple text 

file containing a specification object. These JSON specs are completely 

configurable, allowing system operators or developers to change how a job runs 

or how a workflow engine manages its log or error handling behaviors without 

writing or modifying any code, dynamically and in real-time. JSON specification 

files are submitted to a running workflow engine using a command-line utility and 

a simple service over telnet. Job specifications are also where the initial task 

inputs are be specified - the system can use directly specified input or parse any 

file or directory tree to create inputs, reading files into records with headers. Files 

that are parsed across records or directories that are parsed across filenames 

automatically split each into its own input, which provides parallelized input to job 

tasks. Data parsing could easily be extended to use any type of database or 

distributed file system as a source of input data. A typical job specification is 

shown in figure 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 



	 9	

{ "type": "async", 

    "data": {"type": "directory", 

             "source": "records", 

             "task": "in", 

             "path": "/opt/resources/data/dir/", 

             "extensions": ["txt", "md"], 

             "recursive": "true", 

             "headers": "true", 

             "delimiter": ","}, 

     "tasks": [{"name": "in", 

                   "type": "input"} 

                 {"name": "get-files", 

                  "type": "function", 

                  "language": "java", 

                  "class": "gov.asos.ingest.content.GrabFiles", 

                  "constructor": {}} 

                 {"name": "file-output", 

       "type": "output"}], 

     "workflow": [["in", "get-files"] 

                 ["get-files", "file-output"]]} 

 

Figure 1: A typical job specification map. Jobs must contain a type, which 

determines the message processor; a set of tasks, which themselves contain 

information on the type or the base class, along with constructor parameters; a 

workflow, which specifies how tasks flow between each other; and a data 

parameter, which tells the job how to assemble initial inputs. 

 

 
 
 
 



	 10	

Task API 
 

To run a job’s tasks (which may be written in any number of languages) 

while sharing input and output data between them, we provide a task API that all 

job tasks must implement. This API is written in Java, the language we have 

developed our workflow engine to use. The workflow engine then dynamically 

loads tasks at run-time using their specification in the parent job map. 

To allow other programming languages to seamlessly interact with Java, 

the task API uses the Java Native Interface (JNI) to provide the ability to wrap to 

any native, C based language (such as Fortran or C++) within a task. All tasks 

expose a single run method, which has a single requirement to consume and 

produce a map. The map itself represents a single input or data unit. Within the 

run method itself, the map can be used in any manner necessary, and because 

anything may be stored in the map, this system provides no obfuscation of 

existing behavior.  

The task API also provides all tasks with simple debug, error, info, and log 

level methods, as well as the ability to kill an entire job, or a single task thread 

from within a task. All task log information or error information is stored in the 

same centralized and immutable log, which belongs to the workflow. 

 

 
 
 
 
 
 
 
 
 
 



	 11	

Summary 
 

Together the four tenets of the framework described form a novel 

approach to system design in a problem space for which it is generally difficult to 

develop robust and agile software. Existing code bases can gain enormous 

benefit from its implementation, while new software projects could easily use it 

from the start. It fits well in the applied climatological domain. Its use does not 

preclude the use of other best practices - instead it complements them, allowing 

for targeted refactoring in specific units when problems are apparent. Its 

approach to functional design also promotes a clearly defined mental model of 

system behavior, which may provide an anchor for evolving teams over time, 

preventing many of the issues, which then necessarily must be solved by 

software repair. 

 


